FIRE DEPARTMENT RESPONSE TIMES & RUN ORDERS

Maria Giarrusso

GIS Manager, City of Cranston

OBJECTIVES

- Evaluate currently established service areas and run orders
- Identify areas of vulnerability or concern for further investigation
- Provide baseline data for future What If? scenarios like...
 - Addition or removal of a fire station
 - Relocation of an existing station
 - Bridge or road closures
 - New neighborhood response times
 - Loss or addition of apparatus

HOW CAN THIS BE ACCOMPLISHED?

Network Analyst Software Extension (ESRI)

- Provides Network-based Spatial Analysis
- OD Cost Matrix (Origin-Destination)
- Shortest Route (Distance or Time)
- Service Area
- Network Data
 - Destinations (E911 Address Points) & Highway Points
- Project Plan
 - How to Model Real World?
 - Project Parameters
 - Assumptions
 - Limitations

NETWORK DATA BASIC NEEDS

Network Edge Data (i.e. Roadways) Segment Lengths Speed Limit Cost (Travel Time) One Way? Hierarchy (Used Teleatlas ACC – Arterial Classification Code)

NETWORK DATA

- Cranston Streets Lacked Basic Network Data
- Routes Could Be Solved Using Streets Outside the City (No Data)
- Commercially Available Data Cost Prohibitive (2010/2011)
 - Annual Subscriptions
 - Couldn't Control Road Segment IDs Problem for Developing Stop Sign/Traffic Signal Impedances

NETWORK DATA

Develop Our Own?

ESRI Provided 2005 TeleAtlas Data for RI – Starting Point

- Speed Limits
- One-Way
- ACC Codes (Arterial Classification Codes)

We Improved 2005 TeleAtlas Data in Cranston Only

NETWORK MODEL ELEMENTS

What things affect drive time that we can model?

Driving Speed
Roadway Conditions (Dry, Wet, Snow/Ice)
Factors into Stopping Distance
Increased Stopping Distance = Longer Drive Time
Stop & Yield Signs
New GIS Inventory (2800 +/-)
Traffic Lights
77 Intersections
Turns, Right and Left
Similar to Stop Sign
One-Way Streets
2 Minute "Turn-Out" Time – Contributes to Overall Response Time

WEATHER IMPACT/STOPPING DISTANCES

Q: How much longer does it take to decelerate, stop and accelerate back to your original speed, as compared to not having to stop at all?

StatumEdicts ** f = Optimient of Friction - Dry Road Conditions, Average Conditions *** f = Acceleration nue to gravity, g. (Misee*2) g= Acceleration and Excelaration see constant while stopping and returning to desired speed. Time to Stop equals Time to Continue back to the same speed.						Perception Time, P Reaction Time, R Calculations based on ** Conservative value b	1.25 1.25 level driving surface based on AASHTO Geom	seconds seconds retric Design of Highway and St	reets.	
Speed MPH	Speed Ft/Sec	(Stopping) Deceleration Distance Ft	Acceleration Distance Ft	Acceleration Ft/Sec*2	Deceleration Ft/Sec*2	Time to Stop Seconds	Time to Accelerate from a Stop to Desired Speed Seconds	Time to Drive at Constant Velocity over Accel + Stopping Distance Seconds	Network Impedance for Network Analyst Seconds	Network Impedance for Network Analys Minutes
5	V	Dstop	Daccel		đ	Tstop	Taccel	r	1	
	*S*1.466	= [V*2]/(2***g)	= [V*2]/(2**g)	=t*g	=rg	=(V-0)/d	=(V-0)/a	=(Dstop+Daccet)/V	= [Tstop+Taccon] T] + P + R	1/60
15	21.99	13.7	13.7	17.7	17.71	1.24	1.24	1.24	3.74	0.06236
16	23.456	15.5	15.5	17.7	17.71	1.32	1.32	1.32	3.82	0.06374
17	24.922	17.5	17.5	17.7	17.71	1.41	1.41	1.41	3.91	0,06512
18	26.388	19.7	19.7	17.7	17.71	1.49	1.49	1.49	3.99	0.06650
19	27.854	21.9	21,9	17.7	17.71	1.57	1.57	1.57	4.07	0,06788
20	29.32	24.3	24.3	17.7	17.71	1.66	1.66	1.66	4.16	0.06926
21	30,786	26.8	26,8	17.7	17.71	1.74	1.74	1.74	4.24	0,07064
22	32.252	29.4	29.4	17.7	17,71	1.82	1.82	1.82	4.32	0.07202
23	33.718	32.1	32.1	17.7	17.71	1.90	1.90	1.90	4.40	0.07340
24	35.184	34.9	34.9	17.7	17.71	1.99	1.99	1.99	4.49	0.07478
25	36.65	37.9	37.9	17.7	17.71	2.07	2.07	2.07	4.57	0.07616
26	38.116	41.0	41.0	17.7	17,71	2.15	2.15	2.15	4.65	0.07754
27	39.582	44.2	44.2	17.7	17.71	2.24	2.24	2.24	4.74	0.07892
28	41.048	47.6	47.6	17.7	17.71	2.32	2.32	2.32	4.82	0.08030
29	42.514	51.0	51.0	17.7	17.71	2.40	2.40	2.40	4.90	0.08168
30	43.98	54.6	54.6	17.7	17.71	2.48	2.48	2.48	4.98	0,08306
31	45.446	58.3	58.3	17.7	17.71	2.57	2.57	2.57	5.07	0.08444
32	46.912						65	2.65	5.15	0.08581
33	48.378		Stonning [Distance F	For A V	ohiclo	73	2.73	5.23	0.08719
34	49.844		stopping r	Jistance i	UAV	enicie	81	2.81	5,31	0,08857
35	51.31	Assuming proper	operation of the brak	es on the vehicle, the	90	2.90	5.40	0.08995		
36	52.776	determined by the	effective coefficient	of friction between the	tires and the ro	ad, and the driver's re	eaction 98	2.98	5.48	0.09133
37	54.242	time in a braking	situation. The friction I	orce of the road must	do enough wor	k on the car to reduce	e its 06	3.06	5.56	0.09271
38	55.708	kinetic energy to	zero. If the wheels of th	he car continue to turn	while braking, I	hen static friction is	15	3.15	5.65	0.09409
39	57.174	friction force only	the wheels are locke	a and stiding over the	road surace, th	23	3.23	5.73	0.09547	
40	58.64	- Include only					31	3.31	5.81	0.09685
41	60,106		179		-		39	3,39	5,89	0.09823

Scenario: Dry Roads Average Condition

Coefficient of Friction Dry: 0.55 Wet: 0.3 Snow/Ice: 0.1 Perception Time 1.25 sec Reaction Time 1.25 sec

Affects Network Costs of Stop Signs, Traffic Signals, Global Turns (Left/Right)

Work friction = $-\mu mgd = -\frac{1}{2}mv_0^2$ so the stopping distance is

Response Time Analysis - Network Impedance Values

ZHQ

Note that this implies a stopping distance independent of vehicle mass, and in this case, driver reaction time. It also implies a quadruping of stopping distance with a doubling of vehicle speed.

NETWORK TURN FEATURES

- A Turn models a movement from one edge element to another.
- Model the additional travel time imposed by having to navigate stop/yield signs or traffic light intersection.
- Stop/Yield/Traffic Lights
 - 2400 Turn Records Developed
- Can Specify Default Turn Cost using Global Turn Delay Evaluator
 - Imposed additional travel time for Right or Left Turn and Reverse
 - Can also use for Straight
 - Customize Values

GLOBAL TURN EVALUATOR

Direction	Width (degrees)	Cancel
Straight	60	Cancer
A Reverse	60	Load From Default
Right Turn	120	Auditoria etc.
> Left Turn	120	Load From File
		Save To Default
		Save To File
load Classes	and the second sec	
Hierarchy Attribute: <n< th=""><th>lone > (All roads classified as local road class) Road Cla</th><th>asses</th></n<>	lone > (All roads classified as local road class) Road Cla	asses
Univ Show Turn Cat	egories for Local Roads	
Direction	Description	Seconds
Direction	Description From Local To Local Road Across No Roads	Seconds 0
Direction Straight Straight	Description From Local To Local Road Across No Roads From Local To Local Road Across Local Road	Seconds 0 0
Direction Straight Straight Reverse	Description From Local To Local Road Across No Roads From Local To Local Road Across Local Road From Local To Local Road	Seconds 0 0 20
Direction Straight Straight Reverse Right Turn	Egories for Local Roads Description From Local To Local Road Across No Roads From Local To Local Road Across Local Road From Local To Local Road From Local To Local Road	Seconds 0 0 20 4.57
Direction Straight Straight Reverse Right Turn Left Turn	Description From Local To Local Road Across No Roads From Local To Local Road Across Local Road From Local To Local Road From Local To Local Road From Local To Local Road From Local To Local Road	Seconds 0 0 20 4.57 7.57
Direction Straight Straight Reverse Right Turn Left Turn	Description From Local To Local Road Across No Roads From Local To Local Road Across Local Road From Local To Local Road From Local To Local Road From Local To Local Road From Local To Local Road	Seconds 0 0 20 4.57 7.57
Direction Straight Straight Reverse Right Turn Left Turn	Description From Local To Local Road Across No Roads From Local To Local Road Across Local Road From Local To Local Road From Local To Local Road From Local To Local Road From Local To Local Road	Seconds 0 0 20 4.57 7.57

Values derived from Stopping Distance Calculations
 Changed for Each Environmental Condition

PROJECT PARAMETERS

Q: How do we decide the magnitude of the impact of Model Elements?A: Create a Range of Extreme Conditions.

Best Case

- No Traffic (3am)
 - Drive Speed Limit + 15 mph
- Dry Pavement
 - Baseline Stopping Distances/Time
- No Stop Signs
- Traffic Signals All Green
- No Delays to Make a Turn

<u>Worst Case</u>

- High Traffic Volume (8am/5pm)
 - Reduce Speed 20%
- Snow/Icy Pavement
 - Increased Stopping Distances/Time
 - Complete Stop at All Signs
- All Traffic Signals Red (Complete Stop)
- Global Turn Delays (R/L)

PROJECT PARAMETERS

<u>"Average" Scenario A</u>

- Drive Speed Limit
 - Dry Pavement
 - Baseline Stopping Distances/Time
- Complete Stop at All Signs
- All Traffic Signals Red
- Global Turn Delays (R/L)

<u>Average'' Scenario B</u>
Drive Speed Limit
Wet Pavement

Increased Stopping Distances/Time

Complete Stop at All Signs
All Traffic Signals Red
Global Turn Delays (R/L)

GO!... EXECUTE YOUR PLAN

Execute the Plan for Every Environmental Condition (Best, A, B, Worst)

Adjust:	
Networks Speeds	
Turn Impedances	
 Global Turn Settings 	
Solve OD Matrix With Same Origins & Destinations	
► Repeat	
Process Data	
Analyze & Map Results	

OD COST MATRIX Finds and measures the least-cost (fastest) paths along the network from multiple origins to multiple destinations. Destinations 31,000+ E-911 Points OD Matrix Results **Origins** 6 Fire Stations 185,000+ Records Destinations

OD COST MATRIX RESULTS

For every destination, there are 6 records (6 stations). Quickest time is "First Due". Second fastest is "Second Due", etc...

Response Time (Minutes)

0	Matrix_Lines							
Γ	OBJECTID *	Shape *	OriginID	DestinationID	Name	Total_Cost	EngineOrder	Total_SegLen
	70002	Polyline	3	166085	Station 3 - 15616	5.497327	1	1.758415
	129115	Polyline	5	166085	Station 5 - 15616	6.384164	aste 2	2.240303
	103239	Polyline	4	166085	Station 4 - 15616	6.81008	st to	1.801745
	49014	Polyline	2	166085	Station 2 - 15616	7.326534	Slow 4	2.67082
	161969	Polyline	6	166085	Station 6 - 15616	8.289894	/est	3.156734
	20562	Polyline	1	166085	Station 1 - 15616	10.641494	6	4.42616

Distance(Miles)

OD COST MATRIX RESULTS

Each Record is displayed as a straight line from the Origin to the Destination, not as a solved route.

REARRANGING OD MATRIX RESULTS

To facilitate analysis of the results, and to make symbology more meaningful, the OD cost Matrix results are attached to the destination points.

Constraint Lines Con	In ODMAND Road	_	_									_		_
• 1 ● · 1 ● · 1 ● ● · 1 ● ● · 1 ○ 0 · 0 · 1 ○ 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0	Sie - ODIVIatrix_Lines													
Marin, Lins EngineOtic Origin(D) Total_SegLen Destination@namk Shape_Length OBJECTID Shape 1 Station 3 - 16616 1 3 5.49732 1.758415 160086 47732 8192.620434 70002 Polytine Station 3 - 16616 4 2 2.240303 1660086 47774 10194.867168 40014 Polytine Station 4 - 16616 4 2 7.326841 2.109126 11094.867168 40014 Polytine Station 5 - 16616 4 2 7.326841 2.109126 110991264 11099169 Polytine Station 1 - 15616 4 2 7.326841 2.0502 19316.607081 20662 Polytine 3tation 1 - 15616 4 2 7.326841 2.0562 19316.607081 20662 Polytine 3tation 1 - 15616 6 1 1.0541494 4.2616 166035 20562 19316.607081 20662 Polytine 3tation 1 - 15616 3 5.447327 5 6.3841	- 昭- 省初		let ×											
Name EngineOrder Organio Total_Seq.ten Destination10 Destination2 Shape_Length OBJECTIO Shape * Station 3-16516 1 3 5.497227 1758415 196095 77722 8109.20434 129115 Polytine Station 5-16516 2 0 0.80007 0.240005 198106 40722 1091942621 129115 Polytine Station 5-16516 4 2 7.326684 2.67002 109034 67032 10914 90140 Station 1-16516 4 2 7.326684 2.167034 186005 62294 11915 191284 161969 Polytine 4 0 + + - 6 1 0.541844 4.2616 2.6622 13916.607081 2.0662 Polytine 4 0 + + - 6 1 0.6016 1.0541844 4.2616 2.5622 1919189 2.0662 Polytine 1 Mathematical and anout of 3100 Selected) 1 1.0605 <th>Matrix_Lines</th> <th></th> <th>_</th> <th></th>	Matrix_Lines		_											
Statum 3-16616 1 3 6.487227 17.58415 160005 7722 8192.620434 70002 Polyline Statum 3-16616 2 0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Name	EngineOrder	OriginID	Total_Cost	Total_SegLen	DestinationID	DestinationRar	k Shape_Lengt	h OBJECTID	* Shape *				
Station 5-16516 2 0 000000 2240033 1680045 44775 1051942821 12915 Polyline Station 2-16516 4 2 7.326534 287082 168036 9384 7240.967136 44014 Polyline Station 2-16516 4 2 7.326534 287082 168036 0294 11961991284 161989 Polyline Station 2-16516 6 1 10.641494 4.2271 10041494 4.271 1004	Station 3 - 15616	1	3	5.497327	1.758415	166085	773	2 8192.62043	4 7000	2 Polyline				
Station 4 - 16616 3 4 4 641006 1.801745 166085 9834 7340.96713 103259 Polyline Station 5 - 16516 4 2 7 .326634 267082 166086 17879 11034.66756 49014 Polyline Station 5 - 16516 6 4 2 7 .326634 267082 166086 224 11961.991284 161989 Polyline Station 1.16618 6 1 10.841844 4.42616 166086 20562 19316.607081 20562 Polyline	Station 5 - 15616	2		0.004104	2.240303	166085	457	5 10519.4262	1 12911	5 Polyline	_			
Sation 2 - 16016 4 2 2 26/082 106/085 178/9 11043.60/166 440/14 Polyine Station 1 - 16616 6 1 10.641494 442616 166085 20662 19316.607081 20562 Polyine 1 0 + 1	Station 4 - 15616	3	4	6.81008	1.801745	166085	983	4 7340.96713	3 10323	Polyline	-			
Bald016-16016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Station 2 - 15616	4	2	7.326534	2.67082	166085	1/8/	9 11034.56715	6 4901	Polyline	-			
Baladori 1 - Jodie 0 1 Lockree 10000 20002 1931000761 20002 Fujime 4 0 1	Station 1 15616	6	1	10 641404	3.100/34	100080	025	2 10216 60709	1 2056	Polyline Rolyline	-			
• • • • • • • • • • • • • • • • • • •	Station 1 - 10010	0		10.041494	4,42010	100085	2050	2 13310.00708	2000.	. I rotyline	1			
Matrix_Lines	1 0 F	H (6)	out of 186, 10	Selected)										
Engine Due FullAddress 16616 3 5.497327 5 6.384163 4 6.81008 2 7.32653 6 8.28988 1 10.6 **********************************	Matrix_Lines													
FullAddress ProjectID Engine1 TotCostEngine1 Engine2 TotCostEngine2 Engine3 TotCostEngine3 Engine4 TotCostEngine4 Engine5 TotCostEngine1 Engine6 TotCostEngine3 Engine3 CostEngine3 Engine4 TotCostEngine4 Engine5 TotCostEngine3 Engine4 TotCostEngine4 Engine5 TotCostEngine1 Engine6 TotCostEngine3 Engine4 TotCostEngine4 Engine5 TotCostEngine4 Engine5 TotCostEngine3 Engine5 TotCostEngine4 Engine6 TotCostEngine3 Engine3 CostEngine3 Engine4 TotCostEngine4 Engine5 TotCostEngine4 Engine6 TotCostEngine3 Engine5 TotCostEngine4 Engine6 TotCostEngine3 Engine3 CostEngine3 Engine4 CostEngine4 Engine5 TotCostEngine3 Engine5 TotCostEngine3 Engine3 CostEngine3	Facility Plan													
FullAddress ProjectID Engine1 TotCostEngine2 Engine2 Engine3 TotCostEngine4 Engine5 TotCostEngine6 TotCostEngi	t Engine Due		-	1		1	T							
30 CARTIER ST 15616 3 5.497327 5 6.384163 4 6.81008 2 7.326533 6 8.289893 1 10.6	FullAddress	s Project	ID Engine	1 TotCostEn	ngine1 Engine2	2 TotCostEngine	2 Engine3 Tot	CostEngine3 E	ngine4 TotCo	stEngine4	Engine5	TotCostEngin	Engine6 T	otCostEng
Image: second	30 CARTIER ST	15616		3 5.4	197327 5	6.384163	3 4	6.81008	2	7.326533	6	8.28989;	1	10.64
1 P 1			<u></u>											_
I I														
t Engine Due	• 1•		out of 31135 9	elected)										
	st Engine Due													
	· · · · · · · ·													
													4 4 4	

MODEL EXTREMES: BEST VS WORST CASE

Q: How do the parameters we chose affect the model response times?

City of Cranston Fire Department Response Times - First Engine Due

City of Cranston Fire Department Response Times - Second Engine Due

City of Cranston Fire Department Response Times - Third Engine Due

City of Cranston Fire Department Response Times - Fourth Engine Due

City of Cranston Fire Department Response Times - Sixth Engine Due

City of Cranston Fire Department Run Order Results - First Engine Due

City of Cranston Fire Department Run Order Results - Second Engine Due

City of Cranston Fire Department Run Order Results - Third Engine Due

City of Cranston Fire Department Run Order Results - Fourth Engine Due

City of Cranston Fire Department Run Order Results - Fifth Engine Due

City of Cranston Fire Department Run Order Results - Sixth Engine Due

MISSION ACCOMPLISHED!

- Determine Run Orders & Response Time for Range of Conditions
- Understand & Analyze Impact of Project Settings
- Perform What-If? Scenarios by Adjusting Data and Parameters and Solving OD Cost Matrix
- Know your Data, Project Parameters, Limitations
 There may be other considerations that have not been modeled

QUESTIONS? / COMMENTS

Maria V. Giarrusso GIS Manager City of Cranston mgiarrusso@cranstonri.org

401-780-3178